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Our femtosecond laser safely cuts energetic
materials and metals with surgical precision

Cuts cold and clean Near-zero heat transfer
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Cuts anything Minimal wastes



How a femtosecond pulse laser works
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Pulse width: 150 fs
Average power: up to 3 W
Peak energy: 1 mJ/pulse
Peak power: 40 GW
Repetition rate: 3.5 kHz
Beam Diameter: 13 mm
Wavelength: 810 nm




The laser consists of several modules

The laser is computer
controlled
with auto alignment system




How can the laser cut HE without thermal transfer?
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Heat is transferred by lattice vibrations

Energy absorption occurs on a time scale
comparable to a single lattice vibration

Subsequent hydro expansion and cooling 1s
also too fast for heat transfer

Shock wave 1s intense but too brief to cause
significant reaction
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Laser Interaction with insulating material

Long pulse -cw - 10 ps

Avalanche ionization

Requires seed electron - threshold
has large deviation

¥ Free eledrons reach high density -

¥ Irreversible material breakdown occurs

and ablation begins

¥ electrons absorb laser energy by collisions
with ions and are heated to high temperature

¥ at the same time dectrons transfer energy to
the ions and lattice and the material is heated up
¥ the amount o heating during the laser pulse
depends on the pulse duration and energy
coupling coefficient

¥ absorbed energy leaves the laser focal volume
via heat conduction.

¥ energy transfer from electrons to ions during
laser-matter interaction is strong - large volume
around the laser focus is melted and relatively
small layer of material reaches vaporization
temperature.

Short pulse - <1 ps

Multiphoton ionization

Bound electrons absorb m photons
simultaneously to become ionized

¥ interactiontime is short

¥ electronsdriven to much higher temperature

and the ion or lattice temperature much lower

¥ subsequent electron-ion energy transfer takes
place after the pulse is over and will heat ions to

a much higher temperature than the long-pulse case
¥ A large fraction of the material in the interaction
volume is vaporized, going through the melt phase
very rapidly.

¥ The heat-affected volume due to conduction is much
smaller and most of the energy is carried away by
vaporization.



Ultrashort laser pulses will cut any material
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Programmatic applications for fs lasers

¥ Energetic materials processing

¥ Scientific investigation

¥ Surveillance

¥ Micromachining

¥ Demilitarization




We have a 4-axis-motion positioning system




We have the flexibility to cut small or large explosive samples

High Explosives Applications Facility (HEAF)

Laser lab with
portable laser




Energetic materials processing
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We have demonstrated that we can cut and machine high explosives with
a focused beam from a high-power, femtosecond laser with virtually no heat

transfer to the explosive. This capability has interesting applications to the
processing of energetic materials.

— Precision maciming of HE components

— Eliminationof HE waste and
HE-contaminated waste

— Reduction of pressingcosts
and achievement of greater
pellet uniformity by machining
booster and detonator
pellets from a larger pressing




The laser can make very fine cuts

<4—— 1 mm

Cuts are on
the order of
tens of microns



We demonstrated removal of relatively large amounts of material
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Scientific Investigation

— Preparation of test specimes that
are thinner than can be prepared i .
. - Detonation velocity measurements
by conventional machining.
— Drilling smalholes for insertion
of optical fiber diagnostics

— Machiningsteps and grooves in
the surface of test specimens

— Machiningsmall wedges of HE

High-speed streak record of detonation

T Macmnm@ontoured shapes breakout. Breakout time resolved to < 1ns

— Removing insllation from detonator To camera

cables for probe attachment



We laser drilled holes in 1-cm-thick explosives samples

100-um holes 25-um holes
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¥ Non-trivial to drill small
holes in explosives

¥ Useful for introducing wires
and diagnostic probes in
experiments




Small tantalum disks were cut using optical trepanning technique

¥ Previously the disks were formed by electronic discharge machining (EDM), a difficult
And time-consuming process

¥ Femtosecond laser machining of these disks proved to be 100 times faster and have
fewer rejects



Manufacture of Tantalum Disks

Laser Trepanned
circles cut in single-
crystal tantalum.
Small circles ~100 m
diameter

Cut time 4 secs @ .1 watt ave.
power. 50 m laser spo t size
and fluence of 2.9 J/cm?

Finished 100 m
Diameter tantalum
Disks after polishing to
10 m th ickness




Surveillance

—Disassembly of energetic components  SEM of cut through a strip EBW header

— Drilling access hées for gas sampling
— Cutting test specimas from larger charges :

— Cutting cross-sectionsof components
for inspection

SEM of cut EBW detonator header




Micromachined, safe-and-arm system

Initiating Barrier Booster
pellet

Initiation train

ﬁ ﬁ A mechanical safe-and-arm system

interrupts the initiation train by either
moving the initiating pellet out of line
or by interposing a barrier.

The DoD is very interested in micromachining tiny, mechanical, safe-and-
arm systems for use in advanced munitions. In combination with other

micromachining techniques, fs lasers have many possibilities for use
in this area.



Demilitarization

The fs laser can function as a precision cutting tool for demilitarization.

¥ No heat transfer to
sensitive materials

¥ Will cut both metab and HE
without causing reaction

¥ Minimal waste generation 'S | | MLES Grenade

¥ Possibility of reusing high-
value parts.
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In early experiments, we cut through HE and metals
in both directions

Cut through 1/2-mm steel substrate ~ That particular cut went through the 2-
into HE sample (PETN) mm HE sample (from back surface of

substrate)



In later experiments, we cut through thicker
HE and more reactive metals

Direction of cut
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Cross-section

lcem of HNS cut

— 0.53-mm Al substrate

Substrate after cutting
through HNS




We cut explosive components while preserving delicate internal
structures

Al shell
PBX /

PETN Laser cut
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Material removal rates for shallow holes
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Femtosecond laser cut through 1/8 inch of Stainless Steel

*1 cm long cut required
108 minutes

*Average laser power
was 2 Watts
*Fluence was 3.6 J/cm?

1 «Cut was done in

i atmosphere

| A «Distance to target was
S RN 1-meter (1000mm)
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Programmatic applications for fs lasers

¥ Energetic materials processing

¥ Scientific investigation

¥ Surveillance

¥ Micromachining

¥ Demilitarization




